압력을 받는 얇은 원통 (Thin Cylindrical Pressure Vessels)
일반적으로 얇은 원통으로서는 보일러의 압력 용기를 제조하는데 쓰이며 내부압력 p에 의해 발생하는 응력 의 형태가 아래 그림에 나타난 바와 같으며 \(\sigma_1\)이 원주방향 응력(curcumferential stress), \(\sigma_2\)가 축방향 응력(aixal stress)이다. 얇은 원통에서도 반경방향의 후프응력(hoop stress)이 존재하지만 t/d≤1/10의 얇은 원통에서는 \(\sigma_1,\,\sigma_2\)에 비하여 대단히 작은 값이므로 무시한다. 위의 그림 오른쪽과 같이 임의의 폭 b로 원통을 잘라내고 원주방향 응력과 축방향 응력을 구해 본다. 원주방향 응력 (circumferential stress) 오른쪽 그림에서 원주방향 인장력과 내압에 의해 발생하는 힘은 평형 이어햐 하므로 절단면으로부터 임의의 각도 θ를 취하여 적분하면 \[2\sigma_1bt=\int_0^\pi pb{d\over2}\sin\theta d\theta=pbd\] 따라서 원주방향 응력은 \[\sigma_1={pd\over2t}={pr\over t}\] 축방향 응력 (axial stress) 위의 그림과 같이 축방향으로 작용하는 응력 \(\sigma_2\)에 의해 파괴될 수 있는 면적은 얇은 원통이므로 πdt 이고 \(\sigma_2\pi d\)를 발생시키는 축방향힘은 원통 측벽이 있다고 하면 압력 p에 의해 \(\pi d^2p/4\) 이다. 그러므로 \[\sigma_2={{\pi d^2\over4}p\over\pi dt}={pd\over4t}={pr\over2t}={\sigma_1\over2}\] 즉, 축방향 단면은 원주방향의 단면에 비해 2배의 강도를 갖게 되며 내압 p에 의한 원통의 파괴는 원주방향을 따라 일어난다. 내압을 받는 얇은 원통에서의 변형률 원주방향 응력 \(\sigma_1\)에 의한 변형률 은 \(\epsilon_1\), 축방향 응력 \(\sigma_2\)에 의한 변형률을 \(\epsilon_2\)라 할 때 후크의 법칙 (Hoo