전단응력 (Shear Stress)
전단응력은 상대운동을 하는 유체 의 층 사이에서 발생하는 단위면적당의 마찰력이다. 고체의 경우는 전단응력이 전단변형률 (shear strain)에 비례하지만, 유체 내부에서 발생되는 전단응력은 전단 변형률의 시간에 따른 변화율(rate of shear strain)에 비례한다. 그리고 이 전단변형률의 변화율은 각 방향 속도구배의 합과 같다. 위의 그림과 같이 유동장 내 모든 부분에서의 속도 u가 동일한 x방향을 향하는 유동의 경우에, y방향으로만 속도가 변화한다고 가정하면 전단변형률의 시간에 따른 변화율은 y방향의 속도구배 와 같다. 따라서 전단응력 τ는 속도구배에 비례하므로 다음과 같이 표현한다. \(\begin{align*}\tau=\mu\frac{du}{dy}\end{align*}\) 여기서 비례상수 μ는 점성계수 (viscosity) 또는 절대점성계수 (absolute viscosity)라고 한다. 절대점성계수는 힘×시간/면적의 차원을 가지며 SI단위계에서 \(\rm Pa\cdot s(\equiv N\cdot s/m^2)\)의 단위를 갖는다. 특히 다음과 같은 고유의 단위를 갖는다. \(1\,\rm poise=10^{-1}\,Pa\cdot s=1\,dyne\cdot s/cm^2\) 여기서 poise는 포이슐(Poiseuille)의 업적을 기리기 위해 붙인 것이다. 영국단위계로는 \(\rm lbf\cdot s/ft^2\)이 단위로 사용된다. 대부분의 유체는 속도구배와 무관한 점성계수를 가지며, 이와 같은 유체를 뉴우톤 유체 (Newtonian fluid)라 한다. 그러나 혈액이나 플라스틱(plastic), 타르(tar) 등과 같은 유체들은 점성계수가 속도구배의 함수가 되어 유동상태에 따라 다른 μ값을 갖는다(아래 그림). 이러한 유체들을 비뉴우톤유체 (non-Newtonian fluid)라고 한다. 레올로지(rheology)라는 학문은 비뉴우톤유체의 유동과 변형을 다룬다. 출처 en.wikipedia.org 절대점성계수와 밀도의 비는 동점성계수 (k...
댓글
댓글 쓰기