Gradient Tensor of Vector in Cylindrical Coordinates
Cylindrical coordinate system is not instinct as rectangular one, therefore vector gradient is derived as below.
Each gradient tensor of vector v in rectangular coordinates is expressed like following. Note ∇i∇i is the component ii of del operator.
v=ui+vj+wkv=ui+vj+wk
∇vxx=∇xv⋅i=∂v∂x⋅i=∂∂x(ui+vj+wk)⋅i=∂u∂x
∇vxy=∇yv⋅i=∂v∂y⋅i=∂∂y(ui+vj+wk)⋅i=∂u∂y
⋅⋅⋅
Each gradient tensor of vector v in rectangular coordinates is expressed like following. Note ∇i∇i is the component ii of del operator.
v=ui+vj+wkv=ui+vj+wk
∇vxx=∇xv⋅i=∂v∂x⋅i=∂∂x(ui+vj+wk)⋅i=∂u∂x
∇vxy=∇yv⋅i=∂v∂y⋅i=∂∂y(ui+vj+wk)⋅i=∂u∂y
⋅⋅⋅
∇v=[∇vxx∇vxy∇vxz∇vyx∇vyy∇vyz∇vzx∇vzy∇vzz]=[∂u∂x∂u∂y∂u∂z∂v∂x∂v∂y∂v∂z∂w∂x∂w∂y∂w∂z]
Vector in cylindrical coordinates is described as :
v=vrˆr+vθˆθ+vzˆz
Derivatives of vector v with r,θ,z are :
∂v∂r=∂vr∂rˆr+∂vθ∂rˆθ+∂vz∂rˆz
∂v∂θ=∂(vrˆr)∂θ+∂(vθˆθ)∂θ+∂(vzˆz)∂θ=∂vr∂θˆr+vrˆθ+∂vθ∂θˆθ−vθˆr+∂vz∂θˆz
Where each term is needed product rule. Refer to this page for unit vector variation.
∂(vrˆr)∂θ=∂vr∂θˆr+vr∂ˆr∂θ=∂vr∂θˆr+vrˆθ
∂(vrˆθ)∂θ=∂vθ∂θˆθ+vθ∂ˆθ∂θ=∂vθ∂θˆθ−vθˆr
∂(vzˆz)∂θ=∂vz∂θˆz+vz∂ˆz∂θ=∂vz∂θˆz
Lastly, the partial derivative of z direction is :
∂v∂z=∂vr∂zˆr+∂vθ∂zˆθ+∂vz∂zˆz
Now, each tensor term is derived as following.
∇vrr=∇rv⋅ˆr=∂v∂r⋅ˆr=(∂vr∂rˆr+∂vθ∂rˆθ+∂vz∂rˆz)⋅ˆr=∂vr∂r
∇vrθ=∇θv⋅ˆr=∂vr∂θ⋅ˆr=1r(∂vr∂θˆr+vrˆθ+∂vθ∂θ−vθˆr+∂vz∂θˆz)⋅ˆr=∂vrr∂θ−vθr
∇vrz=∇zv⋅ˆr=∂v∂z⋅ˆr=(∂vr∂zˆr+∂vθ∂zˆθ+∂vz∂zˆz)⋅ˆr=∂vr∂z
∇vθr=∇rv⋅ˆθ=∂v∂r⋅ˆθ=(∂vr∂rˆr+∂vθ∂rˆθ+∂vz∂rˆz)⋅ˆθ=∂vθ∂r
∇vθθ=∇θv⋅ˆθ=∂vr∂θ⋅ˆθ=1r(∂vr∂θˆr+vrˆθ+∂vθ∂θˆθ−vθˆr+∂vz∂θˆz)⋅ˆθ=∂vθr∂θ+vrr
∇vθz=∇zv⋅ˆθ=∂v∂z⋅ˆθ=(∂vr∂zˆr+∂vθ∂zˆθ+∂vz∂zˆz)⋅ˆθ=∂vθ∂z
∇vzr=∇rv⋅ˆz=∂v∂r⋅ˆz=(∂vr∂rˆr+∂vθ∂rˆθ+∂vz∂rˆz)⋅ˆz=∂vz∂r
∇vzθ=∇θv⋅ˆz=∂vr∂θ⋅ˆz=1r(∂vr∂θˆr+vrˆθ+∂vθ∂θˆθ−vθˆr+vz∂θˆz)⋅ˆz=vzr∂θ
∇vzz=∇zv⋅ˆz=∂v∂z⋅ˆz=(∂vr∂zˆr+∂vθ∂zˆθ+∂vz∂zˆz)⋅ˆz=vz∂z
Finally, we've got the all slots of the gradient of vector in cylindrical coordinates.
∇v=[∇vrr∇vrθ∇vrz∇vθr∇vθθ∇vθz∇vzr∇vzθ∇vzz]=[∂vr∂r∂vrr∂θ−vθr∂vr∂z∂vθ∂r∂vθr∂θ+vrr∂vθ∂z∂vz∂r∂vzr∂θ∂vz∂z]
댓글
댓글 쓰기