함수의 합ㆍ차ㆍ적ㆍ몫의 미분법
| 정리 1. 함수 \(u,\,v\)가 같은 구간에서 미분가능하다고 하자. (1) \(f=u+v\) 이면 \(f'(x)=u'(x)+v'(x)\) (2) \(f=uv\) 이면 \(f'(x)=u'(x)v(x)+u(x)v'(x)\) (3) \(\begin{align}f={1\over v}\end{align}\) 이면 \(f'(x)=-\dfrac{v'(x)}{v(x)^2}\) (단, \(v(x)\ne0\)) |
<증명>
(1) \(\begin{split}f'(x)&=\lim_{h\to0}\frac{\{u(x+h)+v(x+h)\}-\{u(x)+v(x)\}}{h}\\&=\lim_{h\to0}\frac{u(x+h)-u(x)}{h}+\lim_{h\to0}\frac{v(x+h)-v(x)}{h}\\&=u'(x)+v'(x)\end{split}\)
(2) \(\begin{split}f'(x)&=\lim_{h\to0}\frac{u(x+h)v(x+h)-u(x)v(x)}{h}\\&=\lim_{h\to0}\left\{\frac{u(x+h)-u(x)}{h}\cdot v(x+h)+u(x)\cdot\frac{v(x+h)-v(x)}{h}\right\}\\&=u'(x)v(x)+u(x)v'(x)\end{split}\)
(3) \(\begin{split}f'(x)&=\lim_{h\to0}{1\over h}\left\{\frac{1}{v(x+h)}-\frac{1}{v(x)}\right\}\\&=\lim_{h\to0}\left\{-\frac{v(x+h)-v(x)}{h}\right\}\cdot\lim_{h\to0}\frac{1}{v(x+h)v(x)}=-\frac{v'(x)}{v(x)^2}\end{split}\)
--- under construction ---
댓글
댓글 쓰기