적분공식 총정리
각 공식의 증명은 번호(No.)를 클릭하여 링크를 참조한다.
| No. | \(f(x)\) | \(\int f(x)dx\) | 비고 |
| 1 | 1 | x | |
| 2 | \(x^\alpha\) | \(\frac{x^{\alpha+1}}{\alpha+1}\) | \(\alpha\ne0\) |
| 3 | \(1/x\) | \(\ln{x}\) | |
| 4 | \(e^x\) | \(e^x\) | |
| 5 | \(\cos{x}\) | \(\sin{x}\) | |
| 6 | \(\sin{x}\) | \(-\cos{x}\) | |
| 7 | \(\sec^2{x}\) | \(\tan{x}\) | |
| 8 | \(\csc^2{x}\) | \(-\cot{x}\) | |
| 9 | \(\frac{1}{a^2+x^2}\) | \({1\over a}{\rm Tan}^{-1}{x\over a}\) | \(a>0\) |
| 10 | \(\frac{1}{\sqrt{a^2-x^2}}\) | \({\rm Sin}^{-1}{x\over a}\) | |
| 11 | \(\frac{1}{x^2-a^2}\) | \({1\over2a}\ln\left|\frac{x-a}{x+a}\right|\) | |
| 12 | \(\frac{1}{\sqrt{x^2+A}}\) | \(\ln\left|x+\sqrt{x^2+A}\right|\) | \(A\ne0\) |
| 13 | \(\frac{1}{(x-a)(x-b)}\) | \({1\over a-b}\ln\left|\frac{x-a}{x-b}\right|\) | \(a\ne b\) |
| 14 | \(a^x\) | \(\frac{a^x}{\ln{a}}\) | \(a\ne1,\,a>0\) |
| 15 | \(\tan{x}\) | \(\ln{|\sec{x}|}\) | |
| 16 | \(\cot{x}\) | \(-\ln{|\csc{x}|}\) | |
| 17 | \(\sqrt{a^2-x^2}\) | \({1\over2}\left(x\sqrt{a^2-x^2}+a^2{\rm Sin}^{-1}{x\over a}\right)\) | \(a>0\) |
| 18 | \(\sqrt{x^2+A}\) | \({1\over2}\left(x\sqrt{x^2+A}+A\ln{|x+\sqrt{x^2+A}|}\right)\) | \(A\ne0\) |
| 19 | \(\frac{f'(x)}{f(x)}\) | \(\ln{|f(x)|}\) | |
| 20 | \(\{f(x)\}^\alpha f'(x)\) | \(\frac{\{f(x)\}^{\alpha+1}}{\alpha+1}\) | \(\alpha\ne-1\) |
| 21 | \(\frac{1}{a^4-x^4}\) | \({1\over2a^3}{\rm Tan}^{-1}{x\over a}+{1\over4a^3}\ln\left|\frac{x+a}{x-a}\right|\) | \(a>0\) |
댓글
댓글 쓰기